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Abstract
In machine learning there is considerable interest in techniques which improve planning
ability. Initial investigations have identified a wide variety of techniques to address this is-
sue. Progress has been hampered by the utility problem, a basic tradeoff between the benefit
of learned knowledge and the cost to locate and apply relevant knowledge. In this paper we
describe the COMPOSER system. COMPOSER embodies a probabilistic solution to the util-
ity problem. It is implemented in the PRODIGY architecture. We compare COMPOSER to
four other approaches which appear in the literature.
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1 INTRODUCTION
Increasingly, machine learning is entertained as a mechanism for improving the efficiency
of planning systems. Investigation in this area has identified a wide array of techniques in-
cluding macro-operators [DeJong86, Fikes72, Mitche1186], chunks [Laird86], and control
rules [Minton88, Mitche1183]. With these techniques comes a growing battery of successful
demonstrations in domains ranging from 8-puzzle to Space Shuttle payload processing. Un-
fortunately, in what is now called the utility problem, learned knowledge can hurt perform-
ance [Minten88]. This is underscored by a growing body of demonstrations where learning
degrades planning performance [Etzioni9Ob, Gratch91 a, Minton85, Subramanian90].

In an earlier paper we elaborated the limitations in a particular learning approach PRODI-
GY/EBL [Gratch9 lb]. That paper also sketched the COMPOSER system which is one solu-
tion to these limitations. COMPOSER is intended as a general solution to the utility problem
which provides probabilistic guarantees of improvement via learning. In this paper we detail
our approach and report on an extensive series of empirical evaluations. These tests compare
COMPOSER's learning criterion against the approaches adopted by PRODIGY/EBL, STATIC
[Etzioni9Ob], DYNAMIC [Etzioni90a], and PALO [Greiner92]. These results substantiate
our earlier analyses. They also cast doubt on the efficacy of nonrecursive control knowledge.
This is significant since the issue of nonrecursive control knowledge has received consider-
able attention in recent literature [Etzioni90b, Letovsky90, Subrainanian90].

2 LEARNING AS SEARCH
Learning can be viewed as a transformational process in which the learning system applies
a series of transformations to the original problem solver (see [Gratch90a, Greiner92]). The
intended result is more effective planning behavior, Typically a planner is transformed with
control knowledge. Different forms of control knowledge include macro-operators [Bray-
erman88, Laird86, Markovitch89], control rules [Drummond89, Etzioni90b, Minton88,
Mitchell83], and static board evaluation functions [Utgoff9l].

The transformations available to a learner define its vocabulary of transformations. These
are essentially learning operators and collectively they define a transformation space. For
instance, acquiring a macro-operator can be viewed as transforming the initial system (the
original planner) into a new system (the planner operating with the macro-operator). A
learning system must explore this space for a sequence of transformations which result in
a better planner.

To evaluate different learning approaches we must clarify our intuitive notions of whenone
planner is more efficient than another. For this paper, we characterize planners through a
numeric utility function which ranks the behavior of a planner over a fixed distribution of
problems. In particular, we equate efficiency with minimizing planning time. Other mea-
sures are possible and our approach could apply to them as well. For any given problem,
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utility increases as the time to solve the problem decreases. The utility of a planner is defined
with respect to a particular problem distribution as the sum of problem utilities weighted by
the probability of occurrence of each problem:

U77LITY(planner,) . _E Time_Cost(plannerhprob) x Pr(prob)
proiDistriktila

Note that higher utility does not entail that the planning time of any particular problem is
reduced. Rather, the expected cost to solve any representative sample of problems is less.

Utility is a preference function which ranks different planners. It is also useful to discuss
the utility of individual transformations. The incremental utility of a transformation is de-
fined as the change in utility that results from applying the transfer-nation to a particular
planner (e.g. adopting a control rule). This means the incremental utility of a transformation
is conditional on the planner to which it is applied. We denote this as: AUTILITY(Transforma-
tion1Planner). Applying a transformation with positive incremental utility results in a more
effective planner. A learning system need not explicitly compute utility values to identify
preferred planners, but it must act (at least approximately) as if it does. In factmany learning
systems do not explicitly evaluate utility.

3 COMPOSER

COMPOSER uses the previous definition of utility to evaluate and adopt control knowledge
which, with high probability, improves planning performance. Its design was mclivated by
deficiencies in PRODIGY/EBL. Another paper illustrates how these deficiencies are shared
by many other speed-up learning techniques [Gratch92]. In this paper we focus on the im-
plementation of COMPOSER. In [Gratch9lb] we note that PRODIGY/EBL adopts two heu-
ristic simplifications to identify beneficial control rules. First, aspects of the problem distri-
bution are learned from a single example. Secondly, control rules are treated as if they do
not interact. These simplifications have the unfortunate consequence that PRODIGY/EBL
can learn control strategies which yield planners which are up to an order of magnitude slow-
er than the original planner. We replace this heuristic approach with a rigorous alternative.

3.1 Algorithm

The current implementation of COMPOSER learns control knowledge in the form of control
rules. Other transformations could be adopted by suitably altering the statistics gathering
procedure described in Section 3.2. COMPOSER is implemented within the PRODIGY 2.0
architecture. This system includes the PRODIGY planner which is a STRIPS-like system.
It identifies plans through depth-first search. The learning component of PRODIGY/EBL
analyzes solution traces and proposes control rules to correct any observed inefficiencies.
These control rules are condition-action statements which inform the PRODIGY planner to
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delete or prefer certain node, operator, or variable binding choices. COMPOSER primarily
utilizes selection and rejection rules. This is discussed further in Section 5.

COMPOSER differs from PRODIGY/EBL in how statistics are gathered and how control rules
are introduced into the PRODIGY planner. We implement a hill-climbing approach to the
utility problem. The basic algorithm is sketched in Figure 1. We assume the user has pro-
vided a training set which is drawn according to the distribution of problems.

Input: TRAINING_EXAMPLES

CONTROL STRATEGY
CANDIDATE_SET - 0
While TRAINING_EXAMPLES

solve problem with PRODIGY+CONTROL_STRATEGY
learn new rules and add them to CANDIDATE_SET
gather statistics for all rules in CANDIDATE SET
POSITIVE_RULES 0
Forall rules e CANDIDATE_SET

If UTILITY(ruleIPRODIGY+CONTROL_STRATEGY) significantly negative
remove rule from CANDIDATE_SET

If L'T1LITY(rule1PRODIGY+CONTROL_STRATEGY) significantly positive
add rule to POSITIVE_RULES

If POSITIVE RULES
append rule with highest utility to CONTROL STRATEGY
remove this rule from CANDIDATE_SET
discard all statistics on rules in CANDIDATE_SET

Output: CONTROL_STRATEGY

Figure 1: The COMPOSER algorithm

Learning occurs with a single pass through the training examples. The algorithm incremen-
tally adds control rules to a currently adopted control strategy. A rule is added only if it has
demonstrated its benefit to a prespecified confidence level. Once added, the rule changes
how the planner behaves on subsequent training examples. New rules are proposed, and sta-
tistics gathered, with respect to the current control strategy. In this manner a control strategy
is "grown" one rule at a time until the training set is exhausted.

3
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3.2 Gathering Incremental Utility Statistics
Gathering incremental utility statistics is the one aspect of COMPOSER which ties it to a par-
ticular representation for control knowledge namely control rules. Other transformations
would require analogous data gathering procedures.

A control rule should only be adopted if it improves the efficiency of the problem solver on
average. This average can be estimated by determining how the rule performs on individual
problems and combining information from several problems. The next section discusses
how to combine information. But first we will describe how COMPOSER extracts incremen-
tal utility values on individual problems.

How can we determine the incremental utility of a control rule on a particular problem? The
obvious approach is to solve the problem twice once using the current control strategy
without the rule in question, and once using the strategy augmented with the candidate rule.
The difference in problem solving cost between these two runs is the incremental utility of
the control rule on that problem. This process must be repeated for every rule in the candidate
set. Clearly this approach is too expensive in practice.

COMPOSER implements a more efficient approach for gathering incremental utility values.
It can extract a utility value for each candidate rule simultaneously from a single solution
trace. While PRODIGY/EEL also derives multiple estimates from a single example, its tech-
nique is rendered inaccurate by the interactions which occur among rules (see LGratch9lb]).
COMPOSER solves the interaction problem by extracting estimates without allowing the
candidate rules to change the search behavior of the planner. Control rules only effect search
behavior if they are adopted into the control strategy.

In cont. _.st to adopted rules, the actions of candidate rules are not acted upon. They are sim-
ply noted in the problem solving trace. After a problem is solved, COMPOSER analyzes the
annotated race, and identifies the search paths which would have been avoided by each rule.
The time spent exploring these avoidable paths indicates the savings which would be pro-
vided by the rule. This savings is compared with the recorded precondition match cost, and
the difference is reported as the incremental utility of the rule for that problem. More details
may be found in [Gratch90b].

It should be noted that this procedure is somewhat more expensive than the heuristic ap-
proach adopted by PRODIGY/EEL. This is because COMPOSER pays the penalty of match-
ing preconditions without acquiring any of the benefit of candidate control rules. We are not
aware c a reliable technique which avoids this additional cost.

3.3 Commitment Criterion
The incremental utility of a transformation across the problem distribution can be estimated
by averaging utility values from several problems. COMPOSER uses average incremental

4
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utility to decide a control rule's fate. The system must apply only transformations which
have positive incremental utility. Additionally, as the data gathering process is expensive,
the system must discard candidate transformations which have incremental negative utility.
Both of the choices should be determined accurately but with as few examples as possible.
In the field of statistics this is referred to as a sequential analysis problem. Observations are
gathered until some stopping criterion is satisfied. As this criterion will commit COMPOSER
to adopting or discarding a transformation we refer to this as a commitment criterion. In this
case we are estimating the incremental utility of transformations to some specified confi-
dence. We require the user to provide an error parameter, 8, which specifies the acceptable
probability of applying or discarding a transformation incorrectly.'

Formally, COMPOSER must choose among two hypotheses for each candidate:

Ho: AUTILITY(mlelplanner+control_strategy) < 0,
or

H,: AUTILITY(rulelplanner+controLstrategy) > 0

The average incremental utility is only an estimate of the true incremental utility. This esti-
mate will differ from the true value, so the system must bound the discrepancy. In particular,
if the rule is negative, the system must bound the probability that it will appear positive, and
vise versa. This is equivalent to bounding the probability that the difference between the true
utility and the estimate is larger than the magnitude of the true utility:

Pr( (ESTIMATE UTELITYI > IUTILITYI )

Nadas [Nadas69] describes a distributionfree commitment criterion which applies. After
taking M examples the probability of error is (approximately) 8, where M is defined as:

M - min,,,' {n: (11,-0,174.,)2 < n(11 a)2)

where -Yr,, is the average utility of the rule r over n problems, X,,j is the utility of r on the
ith problem, and V4 E Y,,,)2 is an indicator of the variance in the sample. The param-
eter a satisfies the constraint that 1(a) 6/2, where (I) is the cumulative distribution function
of the standard normal distribution. In simpler words, COMPOSER take examples until the
inequality, (V4,4,02 < n(11a)2, is satisfied.

The technique approximates the user specified leveL If the user specifies an error level of
8, the true error level will be close to but not necessarily equal to 8 it may be slightly more
or less. The discrepancy is a function of the underlying distribution. Woodroofe provides
a further analysis which indicates the approximation is very close in practice [Woo-
dfoofe82].

1. Alternatively we could require that 8 represent the cumulative error across all applied transformations.
This requires determining a Si at each step such that the sum of all Si's equals 8.

S
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In summary, the commitment criterion permits COMPOSER to identify when transforma-
tions are beneficial with some pre-specified probability. After each problem solving at-
tempt, COMPOSER updates the statistics and evaluates the commitment criterion for each
control rule in the candidate set. If no control rule has attained the confidence requirement,
another problem is solved. If the commitment criterion identifies control rules with positive
incremental utility (there may be more than one), COMPOSER adds the control rule with
highest positive incremental utility to the current strategy, and removes it from the candidate
set. Statistics for the remaining candidates are discarded as they are conditional on the pre-
vious control strategy, and meaningless in the context of the new strategy. If the commitment
criterion identifies candidate rules with negative incremental utility, they are eliminated
from the candidate set. Eliminating a candidate does not affect the current strategy, so the
statistics associated with the remaining candidate control rules are not discarded. This cycle
is repeated until the training set is exhausted. Each time a transformation is adopted the effi-
ciency of the PRODIGY planner is increased, giving COMPOSER an anytime behavior
[Dean8 8].

4 EVALUATION
We evaluated COMPOSER's commitment criterion against several other commitment crite-
ria. Before discussing the experiments we will review these other criteria.

4.1 PRODIGY/EBL's Utility Analysis
PRODIGY/EBL adopts transformations with a heuristic utility analysis. As control rules are
proposed they are added to the current control strategy. The savings afforded by each rule
is estimated from a single example and this value is credited to the rule each time it applies.
Match cost is measured directly. If the cumulative cost exceeds the cumulative savings, the
rule is removed from the current control strategy. The issue of interactions among transfor-
mations is not addressed.

4.2 STATIC's Nonrecursive Hypothesis
STATIC's commitment criterion is based on Etzioni's structural theory of utility. The criteri-
on is grounded in the nonrecursive hypothesis which states that transformations will have
positive incremental utility, regardless of problem distribution, if they are generated from
nonrecursive explanations of planning behavior. An explanation is defined as recursive if
a predicate in a subgoal is derived using another instantiation of the same predicate. The issue
of interactions between transformations is not addressed. STATIC applies this criterion to
control rules but the idea has been applied to macro-operators as well [Letovsky90, Subra-
manian90].

STATIC has exceeded PRODIGY/EBL's performance on a number of domains, including one
domain for which PRODIGY/EBL degrades planning performance. The nonrecursive hy-
pothesis is cited as the principle reason for this success [Etzioni90b]. This claim is difficult

6
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to eva!uat!,31 as these systems can generate very different control rules. We clarify this issue
by testing the nonrecursive hypothesis on PRODIGY/EBL's learning component.

We cotrtruc ted the STATIC-RI system as a re-implementation of STATIC's nonrc oursive hy-
pothesis within the PRODIGY/EBL framework. STATIC-RI replace the commitment criteri-
on of P1MDIGY/EBL with the nonrecursive hypothesis. Instead of utility analysis, as rules
are propaifT.d, STATIC -RI adopts each rule which is based on a nonrecursive explanation and
discards r-,fglt rule which is based on a recursive explanation. In all other respects STATIC-RI
is identical to PRODIGY/EBL

43 DYNAMIC: A Composite System
Etzioni hr,s suggested that the strengths of STATIC and PRODIGY/EBL could be combined
into a single sy3tem [Etzioni90a]. The proposed DYNAMIC system incorporatesa two lay-
ered utility criterion. The nonrecursive hypothesis acts as in initial filter, but the remaining
nonrecursive Oontrol rules are subject to utility analysis and may be later discarded.

We implemented the DYNAMIC -RI system to test this learning criterion. As control rules
are proposed by PRODIGY/EBL's learning module, they are first filtered on the basis of the
nonrecursive hypothesis. The remain rules undergo utility analysis as in PRODIGY/EBL
4.4 PALO's Chernoff Bounds
Greiner and Cohen have recently proposed an approach which is similar to COMPOSER.
The Probably Approximately Locally Optimal (PALO) approach also adopts a hill-climbing
technique and evaluates transformations by a statistical method. The primary difference be-
tween our two methods is the commitment criteria. COMPOSER uses the sequential analysis
technique of NAdas, while PALO uses Chemoff bounds.

Both techniques require similar assumptions namely that the problem distribution is
fixed, training examples are randomly drawn from this distribution, and that the distribution
of utility values over this problem distribution possesses a finite variance. The difference
is that Chemoff bounds provide somewhat stronger guarantees at the cost ofmore examples.
The Nadas technique implements approximate significance levels the true error level will
be close to but not necessarily equal to 8. PALO's technique provides worst case bounds.
This means that if the user specifies an error level of 8, the true error level will never exceed
8, and may in fact be much lower.

The PALO-RI system evaluates this approach. PALO-RI is a modification of COMPOSER
where the Nadas technique is replaced with PALO's commitment criterion. Examples are
gathered until a control rule satisfies the following inequality:

I xri > A !in!
2
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where Xrd is the utility of rule r on problem 1, and A is a parameter which is related the maxi-
mal cost of solving problems? One disadvantage of this technique is it is difficultto assess
the optimal value for A and the chosen value can significantly impact the number of of exam-
ples required by the method. Our resolution of this issue is discussed in the experiments.

4.4 Experiments
COMPOSER was tested on the STRIPS domain from [Minton88], the ABWORLD domain
from [Etzioni90a] for which PRODIGY/EBL produced harmful strategies, and the BIN
WORLD domain from [Gratch9 la] which yielded detrimental results for both STATIC and
PRODIGY/EBL's learning criteria. The results are summarized in Figure 2. In each domain
the systems are trained on 100 training examples drawn randomly from a fixed distribution.
A learning curve is generated by saving the current control strategy after every twenty train-
ing examples.3 The graphs illustrate learning curves where the independent measure is the
number of training examples and the dependent measure is execution time for 100 test prob-
lems drawn from the same distribution. This process is repeated five times, using different
but identically distributed training and test sets. Values in Figure 2 represent the average of
these five trials. The header "# Rules" indicates the average number of rules learned by the
system; "Train Time" is the number of seconds required to process the 100 training exam-
ples; "Test Time" refers to the number of seconds required to generate solutions for the 100
test problems.

As we stated earlier, COMPOSER does not implement a general approach to evaluating pref-
erence rules. In particular, it cannot properly evaluate the incremental utility of preference
rules in the ABWORLD and STRIPS domains. To ensure that differences reflect the commit-
ment criteria and not the vocabulary of transformations, we disabled the learning of prefer-
ence rules for every system in the STRIPS and ABWORLD domains. We evaluated the rami-
fications of this change by comparing PRODIGY/EBL with and without preference rules
and found that, in both domains, more efficient strategies resulted when preference rules
were disabled. This is consistent with statements made by Minton concerning preference
rules [Minton88 p. 129]. COMPOSER and PALORI require a parameter which represents
the confidence level for adding a transformation. This was set at 95%. For PALORI's A
parameter, we tried to assign a value which is close to the maximal problem solving cost
without going under. It was set as follows: ABWORLD 75 seconds, STRIPS 150 sec-
onds, BINWORLD 150 seconds.

2. More precisely, this is the maximal cost of the problem solver with the current control strategy plus the
maximum problem solving cost of the problem solver using the control rule which we are analyzing.
3. PRODIGY/EBL's utility analysis requires an additional settling phase after training. Each control strategy
produced by PRODIGYIEBL and DYNAMIC-RI received a settling phase cf 20 problems where learning was
disabled by utility analysis continued to filter rules.

8
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Figure 2: Summary of empriical results

It was quickly apparent that PALORI would not adopt any transformations within the 100
training examples. We tried to give the system enough examples to reach quiescence but this
proved too expensive. The problem is twofold first, too many training examples were
required; secondly, and as a consequence of the first problem, the candidate set grew large
since harmful rules were not discarded as quickly as in COMPOSER. This increased the cost
to solve each training example. To collect statistics on PALORI we onlyperformed one in-
stead of five learning trials. Furthermore, we terminated PALORI after the first transforma-
tion was adopted or 10,000 examples, whichever came first.

9
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45 Discussion
The results illustrate several interesting features. COMPOSER exceeded the performance of
all other approaches in every domain. In AB-WORLD and STRIPS, COMPOSER identified
beneficial control strategies. In BIN-WORLD the system did not adopt any transformations.
It does not appear that any control rule improves performance in this domain. It should be
stressed that all systems utilized the same learning module. Therefore the results represent
differences in commitment strategies rather than in the vocabulary of transformations.

As expected, COMPOSER and PALO-RI had the highest learning times as they incur the pre-
condition cost of candidate control rules without gaining the benefit of their recommenda-
tions. The one exception was BIN-WORLD where COMPOSER quickly discarded a very ex-
pensive control rule which PRODIGY/EBL, STATIC-RI, and DYNAMIC-RI retained. An
encouraging result is that COMPOSER's learning times were not substantially higher than
the non-statistical systems. PALO-RI's learning times were significantly higher.

The results cast doubts on the nonrecursive hypothesis. STATIC-RI yielded the worst per-
formance on all domains. Even in conjunction with utility analysis the results are mixed
benefit on the AB-WORLD, slightly worse than utility analysis alone in STRIPS, and worse
than no-learning in BIN-WORLD. A post-hoc analysis of control strategies did indicate that
the best rules were nonrecursive, but many nonrecursive rules were also detrimental. The
slow-down on BIN-WORLD primarily results from one nonrecursive control rule. Thus it
appears that nonrecursiveness may be an important property but is insufficient to ensure per-
formance improvements. These results are interesting since Etzioni reports that STATIC out-
performs PRODIGY/EBL and No Learning in AB-WORLD. The nonrecursive hypothesis
cannot account for this difference. We attribute the difference to the fact that STATIC and
STATIC-RI entertain different sets of control rules. STATIC-RI was constrained to use the
vocabulary which was available to PRODIGY/EBL while STATIC has its own rule generator.

Finally, although PALO-RI did not improve performance within the 100 training examples,
we believe that if it were given sufficient examples it would out perform all other systems.
With extended examples it did exceed COMPOSER's performance in AB-WORLD. This is
because the PALO approach commits to transformations with highest incremental utility
while COMPOSER balances incremental utility against variance. Unfortunately the cost of
PALO's performance improvement is very high, both in terms of examples and learning time.
Thus, while COMPOSER may identify somewhat less beneficial strategies, it achieves much
faster convergence.

5 LIMITATIONS AND FUTURE RESEARCH

Our investigations have exposed two important issues for future research.

10
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5.1 Preference Rules
There are difficulties in extending COMPOSER's utility gathering approach to preference
rules. It is easy to record the match cost for these rules. The problem stems from determining
how much a rule would save if it were added to the control strategy. This is straightforward
in the case of rules which delete alternatives. The search space explored by the planner using
such a rule will always be a subset of the search search space explored without the rule. This
is not necessarily the case with preference rules. A candidate preference rule might suggest
a search path which was not explored when the training example vies solved (this can arise
if there are multiple solutions to the training example). To determine the potential savings
of the preference rule under these circumstances, the system must reinvoke the planner and
explore this alternative path. This need may arise many times in one problem and othercan-
didate preference rules might require even different paths to be expanded.
This discussion points to a general issue that some transformation vocabularies may be easier
to implement within the COMPOSER framework than others. Perhaps the issue can be re-
solved by identifying alternative means to gather utility values. This problem disappears if
we are willing to solve training problems twice once with and once without the transfor-
mation but this is unlikely to be feasible in practice.
5.2 Commitment Criteria
Both Greiner and Cohen's approach and our own provide probabilistic guarantees of im-
provement though learning. The commitment criteria used by these systems exhibit differ-
ent behaviors. Chemoff bounds produce better control strategies but at a higher learning
cost. Neither technique directly accesses the tradeoff between the improvement due to learn-
ing and the cost to achieve that improvement. Currently we are investigating ways to apply
e vision theoretic methods to resolve this tradeoff in a principled way.
6 CONCLUSIONS
Learning shows great promise to extend the generality and effectiveness of planning tech-
niques. Unfortunately, many learning approaches are based on poorly understood heuristics.
In many circumstances a technique designed to improve planning performance can have the
opposite effect.

In this paper we discussed one general approach to the utility problem which gives probabil-
istic guarantees of improvement through learning. Our implementation is restricted to con-
trol rules but could be extended to other representations of control knowledge. We con-
trasted COMPOSER with four other learning techniques three which do not provide
guarantees, and one which does. The utility analysis method of PRODIGY/EBL, the nonre-
cursive hypothesis of STATIC, and even a combination of both can produce substantial per-
formance degradations. Greiner and Cohen's PALO approach shouldyield somewhat better
performance improvements than COMPOSER but at a substantially higher learning cost.
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